PHASE CONSTANTS

Harmonic oscillations are often described with sinusoidal functions. These can be the sine or cosine fuctions $x(t) = A\cos(\omega t)$ or $x(t) = B\sin(\omega t)$ if the initial positions are A_{max} or zero. If the initial position is not A or zero, a linear sum such as $x(t) = A\cos(\omega t) + B\sin(\omega t)$, or use of a phase constant can adjust either function to any initial position. To see how this works, explore $x(t) = A\cos(\omega t)$, $x(t) = A\cos(\omega t + \delta)$, and $x(t) = A\cos(\omega t - \delta)$.

The plot of $x(t) = A\cos(\omega t)$ has x(t = 0) = A, that is, the function is maximum at t = 0.

If a phase constant is added to the angle, $x(t) = ACos(\omega t + \delta)$, it shifts the maximum back. Shown is $ACos(\omega t + \pi/4)$ so the maximum of the function is at $-\pi/4$ and x(t = 0) is zero.

If a phase constant is subtracted from the angle, $x(t) = ACos(\omega t - \delta)$, it shifts the maximum forward. Shown is $ACos(\omega t - \pi/4)$ so the maximum of the function is at $+\pi/4$ and x(t = 0) is zero. This time, $ACos(\omega t - \pi/4)$ plots just like $x(t) = ASin(\omega t)$.

