Phase Constants

Harmonic oscillations are often described with sinusoidal functions. These can be the sine or cosine fuctions $x(t)=A \cos (\omega t)$ or $x(t)=B \sin (\omega t)$ if the initial positions are $A_{\text {max }}$ or zero. If the initial position is not A or zero, a linear sum such as $x(\dagger)=A \cos (\omega t)+B \sin (\omega t)$, or use of a phase constant can adjust either function to any initial position. To see how this works, explore $x(\dagger)=A \operatorname{Cos}(\omega \dagger), x(\dagger)=A \operatorname{Cos}(\omega \dagger+\delta)$, and $x(\dagger)=A \operatorname{Cos}(\omega \dagger-\delta)$.

The plot of $x(t)=A \cos (\omega t)$ has $x(t=0)=A$, that is, the function is maximum at $t=0$.

If a phase constant is added to the angle, $x(t)=A \operatorname{Cos}(\omega t+\delta)$, it shifts the maximum back. Shown is $A \operatorname{Cos}(\omega t+\pi / 4)$ so the maximum of the function is at $-\pi / 4$ and $x(t=0)$ is zero.

If a phase constant is subtracted from the angle, $x(\dagger)=A \operatorname{Cos}(\omega t-\delta)$, it shifts the maximum forward. Shown is $A \operatorname{Cos}(\omega \dagger-\pi / 4)$ so the maximum of the function is at $+\pi / 4$ and $x(\dagger=0)$ is zero. This time, $A \operatorname{Cos}(\omega t-\pi / 4)$ plots just like $x(\dagger)=A \operatorname{Sin}(\omega t)$.

Subtracting a phase constant shifts $\dagger=0$ axis
to the left

